Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Surg ; 224(1 Pt B): 569-575, 2022 07.
Article in English | MEDLINE | ID: covidwho-1734147

ABSTRACT

BACKGROUND: The COVID-19 pandemic revealed flaws in the stockpiling and distribution of ventilators. In this study, we assessed the durability, sterilizability, and performance of a 3D-printed ventilator. METHODS: SLS-printed devices were dropped from 1.83 m and autoclaved before evaluation on a COVID-19 simulated patient. The respiratory performance of an extrusion-printed device was studied using a variable compliance model. Ranges of sustainable respiratory rates were evaluated as a function of tidal volume. RESULTS: Autoclaving and dropping the device did not negatively impact minute ventilation or PIP for sustained ventilation. Equivalence was significant across all measures except for comparing the autoclaved and dropped with p = 0.06. Extrusion produced ventilators achieved minute ventilation ranging from 4.1 to 12.2 L/min for all simulated compliances; there was an inverse correlation between tidal volume and respiratory rate. CONCLUSION: The CRISIS ventilator is a durable, sterilizable, and reusable 3D-printed ventilator using off-the-shelf materials which could be employed variety of adult lung diseases. Further in-vivo testing is needed.


Subject(s)
COVID-19 , Pandemics , Adult , Humans , Printing, Three-Dimensional , Respiratory Rate , Ventilators, Mechanical
2.
Nutrients ; 12(6)2020 May 27.
Article in English | MEDLINE | ID: covidwho-1725878

ABSTRACT

The coronavirus-disease 2019 (COVID-19) was announced as a global pandemic by the World Health Organization. Challenges arise concerning how to optimally support the immune system in the general population, especially under self-confinement. An optimal immune response depends on an adequate diet and nutrition in order to keep infection at bay. For example, sufficient protein intake is crucial for optimal antibody production. Low micronutrient status, such as of vitamin A or zinc, has been associated with increased infection risk. Frequently, poor nutrient status is associated with inflammation and oxidative stress, which in turn can impact the immune system. Dietary constituents with especially high anti-inflammatory and antioxidant capacity include vitamin C, vitamin E, and phytochemicals such as carotenoids and polyphenols. Several of these can interact with transcription factors such as NF-kB and Nrf-2, related to anti-inflammatory and antioxidant effects, respectively. Vitamin D in particular may perturb viral cellular infection via interacting with cell entry receptors (angiotensin converting enzyme 2), ACE2. Dietary fiber, fermented by the gut microbiota into short-chain fatty acids, has also been shown to produce anti-inflammatory effects. In this review, we highlight the importance of an optimal status of relevant nutrients to effectively reduce inflammation and oxidative stress, thereby strengthening the immune system during the COVID-19 crisis.


Subject(s)
Coronavirus Infections , Diet , Immune System/immunology , Inflammation/immunology , Nutrients/immunology , Oxidative Stress/immunology , Pandemics , Pneumonia, Viral , Antioxidants , Betacoronavirus , COVID-19 , Coronavirus Infections/immunology , Humans , Inflammation/prevention & control , Nutritional Status/immunology , Pneumonia, Viral/immunology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL